Localic Completion of Quasimetric Spaces

نویسنده

  • Steven Vickers
چکیده

We give a constructive localic account of the completion of quasimetric spaces. In the context of Lawvere’s approach, using enriched categories, the points of the completion are flat left modules over the quasimetric space. The completion is a triquotient surjective image of a space of Cauchy sequences and can also be embedded in a continuous dcpo, the “ball domain”. Various examples and constructions are given, including the lower, upper and Vietoris powerlocales, which are completions of finite powerspaces. The exposition uses the language of locales as “topology-free spaces”.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Localic completion of uniform spaces

We extend the notion of localic completion of generalised metric spaces by Steven Vickers to the setting of generalised uniform spaces. A generalised uniform space (gus) is a set X equipped with a family of generalised metrics on X, where a generalised metric on X is a map from X ×X to the upper reals satisfying zero self-distance law and triangle inequality. For a symmetric generalised uniform...

متن کامل

Localic completion of generalized metric spaces II: Powerlocales

The work investigates the powerlocales (lower, upper, Vietoris) of localic completions of generalized metric spaces. The main result is that all three are localic completions of generalized metric powerspaces, on the Kuratowski finite powerset. Applications: (1) A localic completion is always open, and is compact iff its generalized metric space is totally bounded. (2) The Heine-Borel Theorem i...

متن کامل

A double completion for an arbitrary T0-quasi-metric space

We present a conjugate invariant method for completing any T0-quasi-metric space. The completion is built as an extension of the bicompletion of the original space. For balanced T0-quasi-metric spaces our completion yields up to isometry the completion due to Doitchinov. The question which uniformly continuous maps between T0-quasimetric spaces can be extended to the constructed completions lea...

متن کامل

Variational Principles and Completeness in Pseudo-Quasimetric Spaces

In this paper we establish new forward and backward versions of Ekeland’s variational principle for the class of strictly-decreasing forward(resp. backward-) lower-semicontinuou functionals in pseudo-quasimetric spaces. We do not require that the space under consideration either is complete or enjoys the limit uniqueness property due to the fact that the collections of forward and backward limi...

متن کامل

Sobriety and Localic Compactness in Categories of L-Bitopological Spaces

The notions of L-sobriety and L-spatiality are introduced for the category L-BiTop of Lbitopological spaces. Such notions are used to extend the known adjunction between the category L-Top of L-topological spaces and the category Loc of locals to one between the category L-BiTop and BiLoc. Also, the concepts of localic regularity and localic compactness are introduced in the mentioned category.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997